Predlog kontrolne table za ocenjivanje testova

Stručni naučni rad

  • Katarina Vignjević Tehnički fakultet “Mihajlo Pupin” Zrenjanin, Univerzitet u Novom Sadu, Srbija
  • Marko Blažić Tehnički fakultet “Mihajlo Pupin” Zrenjanin, Univerzitet u Novom Sadu, Srbija
  • Dilan Dobardžić Tehnički fakultet “Mihajlo Pupin” Zrenjanin, Univerzitet u Novom Sadu, Srbija
  • Višnja Ognjenović Tehnički fakultet “Mihajlo Pupin” Zrenjanin, Univerzitet u Novom Sadu, Srbija
Ključne reči: Kontrolna tabla za ocenjivanje, Vizualizacija podataka, Analitika učenja, Testovi programiranja, Praćenje učinka

Apstrakt

U ovom radu su istraženi razvoj, primena i potencijal obrazovnih kontrolnih tabli za evaluaciju testova u visokom obrazovanju, s posebnim fokusom na predmete iz oblasti programiranja. S obzirom na sve veću potrebu za donošenjem odluka zasnovanih na podacima u obrazovnim institucijama, kontrolne table su se pokazale kao ključni alati za praćenje performansi studenata, evaluaciju kvaliteta testova i identifikaciju trendova u učenju. U radu je pružen pregled evolucije kontrolnih tabli, od jednostavnih izveštajnih alata do složenih interaktivnih platformi sa mogućnostima prediktivne i preskriptivne analitike. Kroz upotrebu naprednih vizualizacija i analitičkih tehnika, predložena kontrolna tabla omogućava nastavnicima i administratorima da efikasno prate učinak studenata, prepoznaju oblasti koje zahtevaju dodatnu pažnju i prilagode svoje nastavne strategije u skladu sa tim. Predložena kontrolna tabla za ocenjivanje testova u predmetu Programiranje integriše napredne analitičke metode za automatsku evaluaciju i analizu studentskih odgovora, omogućavajući prikaz performansi na različitim nivoima i ocenjivanje kvaliteta testova. Prototip razvijen u Power BI nudi interaktivne vizualizacije, kao što su grafikoni koji omogućavaju praćenje uspeha studenata, analizu distribucije tačnih i netačnih odgovora po tipu pitanja, kao i identifikaciju trendova u učenju kroz različite testove, dok filtriranje po težini i vrsti pitanja omogućava detaljniju i efikasniju analizu.

Reference

Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46(5), 30-32.

Gašević, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1), 64-71. https://doi.org/10.1007/s11528-014-0822-x

Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2020). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98-110. https://doi.org/10.1016/j.chb.2018.07.027

Drachsler, H., & Greller, W. (2016). Privacy and analytics: It's a DELICATE issue: A checklist approach for supporting ethical decision making in learning analytics. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, 89-98. https://doi.org/10.1145/2883851.2883893

Nordmark, S., Augustsson, H., & Rundquist, R. (2024). A Current Overview of the Use of Learning Analytics Dashboards. Education Sciences, 14(1), 82. https://doi.org/10.3390/educsci14010082

Guerra, J., Ortiz-Rojas, M., Zúñiga‐Prieto, M. A., Scheihing, E., Jiménez, A., Broos, T., De Laet, T., & Verbert, K. (2020). Adaptation and evaluation of a learning analytics dashboard to improve academic support at three Latin American universities. British Journal of Educational Technology, 51(4), 973-1001. https://doi.org/10.1111/bjet.12968

Leitner, P., Ebner, M., & Ebner, M. (2020). Learning analytics dashboard: A tool for providing actionable insights to learners. International Journal of Educational Technology in Higher Education, 17, 1-22. https://doi.org/10.1186/s41239-020-00221-7

Klerkx, J., Verbert, K., & Duval, E. (2017). Learning analytics dashboards. In Proceedings of the 7th European Conference on Technology Enhanced Learning. Springer.

Baneres, D., Rodríguez, M. E., & Guerrero-Roldán, A. E. (2021). Development of a learning analytics-based tool to improve learner engagement in flipped classrooms. Computers & Education, 161, 104059. https://doi.org/10.1016/j.compedu.2020.104059

Namoun, A., & Alshanqiti, A. (2020). The state of predictive modeling of student outcomes in learning analytics: A systematic literature review. Computers in Human Behavior, 104, 106215. https://doi.org/10.1016/j.chb.2019.106215

Matcha, W., Gašević, D., & Pardo, A. (2020). Learning analytics and learning theories: Towards a social-cultural perspective of learning analytics. Educational Technology Research and Development, 68(6), 3171-3194. https://doi.org/10.1007/s11423-020-09789-z

Krumm, A. E., Waddington, R. J., Teasley, S. D., & Lonn, S. (2014). A learning management system-based early warning system for academic advising in undergraduate engineering. In J. A. Larusson & B. White (Eds.), Learning Analytics: From Research to Practice (pp. 103-119). Springer. https://doi.org/10.1007/978-1-4614-3305-7_6

Leony, D., Pardo, A., de la Fuente Valentín, L., de Castro, D. S., & Kloos, C. D. (2012). GLASS: A learning analytics visualization tool. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 162–163. ACM.

Valle, N., Antonenko, P., Pasha, D., Kara, Huggins-Manley, A. (2021). Staying on target: A systematic literature review on learner-facing learning analytics dashboards. British Journal of Educational Technology, 52. https://doi.org/10.1111/bjet.13089

Bera, A. (2016). Impact of dashboard design on decision-making abilities: A study using eye tracking technology. Journal of Business Research, 60(9), 965–974.

Essa, A., & Ayad, K. (2012). Student success system (S3): A predictive model to identify at-risk students. In Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (pp. 153-157). ACM.

Kaplan, R. S., & Norton, D. P. (1992). The balanced scorecard: Measures that drive performance. Harvard Business Review, 70(1), 71-79.

Tailor, A., & Baines, T. (2011). Designing performance measurement systems: Theory and practice. International Journal of Production Research, 49(15), 4493-4513. https://doi.org/10.1080/00207543.2010.508934

Wyatt, J. C. (2004). St Luke's Episcopal Health System: Integrating dashboards and balanced scorecards. Journal of Healthcare Management, 49(3), 167-179.

González-Calatayud, V., Prendes-Espinosa, P., & Roig-Vila, R. (2021). Artificial intelligence for student assessment: A systematic review. Applied Sciences, 11(12), 5467. https://doi.org/10.3390/app11125467

Wu, Z., & Xu, Y. (2020). Automating student assessment using digital data to improve education management effectiveness in higher education institutions. Computers & Education, 146, 103760. https://doi.org/10.1016/j.compedu.2019.103760

Kim, J., Jo, I. H., & Park, Y. (2016). Effects of digital score reporting and feedback on students' learning in higher education. Asia Pacific Education Review, 17(1), 13–24. https://doi.org/10.1007/s12564-015-9412-9

Alexander, R. J., Broadfoot, P. M., & Phillips, D. (2019). The past, present and future of educational assessment: A transdisciplinary perspective. Oxford Review of Education, 45(4), 469-489. https://doi.org/10.1080/03054985.2019.1613635

Slika 1: Nikitin, B. for Nixtio. (2023). Students Proficiency Dashboard. Dribbble. https://dribbble.com/shots/24442332-Students-Proficiency-Dashboard

Slika 2: Rathi, R. (2023). Education Dashboard. Figma Community. https://www.figma.com/community/file/1214641066851863180/education-dashboard

Slika 3: Alekseeva, A. (2023). Dashboard UI design for Education platform. Behance. https://www.behance.net/gallery/162398275/Dashboard-UI-design-for-Education-platform
Objavljeno
21. 06. 2025.
Broj časopisa
Sekcija
VISOKO OBRAZOVANјE